Exceptional fossil preservation and evolution of the ray-finned fish brain

Exceptional fossil preservation and evolution of the ray-finned fish brain
  • Nieuwenhuys, R., ten Donkelaar, H. J. & Nicholson, C. The Central Nervous System of Vertebrates (Springer, 1998).

  • Friedman, M. The early evolution of ray-finned fishes. Palaeontology 58, 213–228 (2015).


    Google Scholar
     

  • Giles, S., Xu, G. H., Near, T. J. & Friedman, M. Early members of ‘living fossil’ lineage imply later origin of modern ray-finned fishes. Nature 549, 265–268 (2017).

    CAS 

    Google Scholar
     

  • Moodie, R. L. A new fish brain from the coal measures of Kansas, with a review of other fossil brains. J. Comp. Neurol. 25, 135–181 (1915).


    Google Scholar
     

  • Nielsen, E. Studies on Triassic Fishes: Glaucolepis and Boreosomus. 1 (Reitzel, 1942).

  • Giles, S. & Friedman, M. Virtual reconstruction of endocast anatomy in early ray-finned fishes (Osteichthyes, Actinopterygii). J. Paleontol. 88, 636–651 (2014).


    Google Scholar
     

  • Lu, J., Giles, S., Friedman, M., den Blaauwen, J. L. & Zhu, M. The oldest actinopterygian highlights the cryptic early history of the hyperdiverse ray-finned fishes. Curr. Biol. 26, 1602–1608 (2016).

    CAS 

    Google Scholar
     

  • Edinger, T. Recent advances in paleoneurology. Prog. Brain Res. 6, 147–160 (1964).


    Google Scholar
     

  • Ikenaga, T. et al. Morphological analysis of the cerebellum and its efferent system in a basal actinopterygian fish, Polypterus senegalus. J. Comp. Neurol. 530, 1231–1246 (2022).

    CAS 

    Google Scholar
     

  • Ma, X., Hou, X., Edgecombe, G. D. & Strausfeld, N. J. Complex brain and optic lobes in an early Cambrian arthropod. Nature 490, 258–261 (2012).

    CAS 

    Google Scholar
     

  • Edgecombe, G. D., Ma, X. & Strausfeld, N. J. Unlocking the early fossil record of the arthropod central nervous system. Philos. Trans. R. Soc. B 370, 20150038 (2015).


    Google Scholar
     

  • Strausfeld, N. J., Ma, X. & Edgecombe, G. D. Fossils and the evolution of the arthropod brain. Curr. Biol. 26, R989–R1000 (2016).

    CAS 

    Google Scholar
     

  • Pradel, A. et al. Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography. Proc. Natl Acad. Sci. USA 106, 5224–5228 (2009).

    CAS 

    Google Scholar
     

  • Maldanis, L. et al. Heart fossilization is possible and informs the evolution of cardiac outflow tract in vertebrates. eLife 5, e14698 (2016).


    Google Scholar
     

  • Trinajstic, K. et al. Exceptional preservation of organs in Devonian placoderms from the Gogo Lagerstätte. Science 377, 1311–1314 (2022).

    CAS 

    Google Scholar
     

  • Braford, M. R. Stalking the everted telencephalon: comparisons of forebrain organization in basal ray-finned fishes and teleosts. Brain Behav. Evol. 74, 56–76 (2009).


    Google Scholar
     

  • Briscoe, S. D. & Ragsdale, C. W. Evolution of the chordate telencephalon. Curr. Biol. 29, R647–R662 (2019).

    CAS 

    Google Scholar
     

  • Nieuwenhuys, R. The development and general morphology of the telencephalon of actinopterygian fishes: synopsis, documentation and commentary. Brain Struct. Funct. 215, 141–157 (2011).


    Google Scholar
     

  • Nelson, J. S., Grande, T. C. & Wilson, M. V. H. Fishes of the World (John Wiley & Sons, 2016).

  • Jarvik, E. Basic Structure and Evolution of Vertebrates (Academic, 1980).

  • Clement, A. M., Nysjö, J., Strand, R. & Ahlberg, P. E. Brain–endocast relationship in the Australian lungfish, Neoceratodus forsteri, elucidated from tomographic data (Sarcopterygii: Dipnoi). PLoS ONE 10, e0141277 (2015).


    Google Scholar
     

  • Clement, A. M., Challands, T. J., Long, J. A. & Ahlberg, P. E. The cranial endocast of Dipnorhynchus sussmilchi (Sarcopterygii: Dipnoi) and the interrelationships of stem-group lungfishes. PeerJ 4, e2539 (2016).

  • Dutel, H. et al. Neurocranial development of the coelacanth and the evolution of the sarcopterygian head. Nature 569, 556–559 (2019).

    CAS 

    Google Scholar
     

  • Coates, M. I. Endocranial preservation of a Carboniferous actinopterygian from Lancashire, UK, and the interrelationships of primitive actinopterygians. Philos. Trans. R. Soc. B 354, 435–462 (1999).


    Google Scholar
     

  • Poplin, C. M. Etude de Quelques Paleoniscides Pennsylvaniens du Kansas (Cahiers de Paléontologie, Editions du CNRS, 1974).

  • Hamel, M.-H. & Poplin, C. The braincase anatomy of Lawrenciella schaefferi, actinopterygian from the Upper Carboniferous of Kansas (USA). J. Vertebr. Paleontol. 28, 989–1006 (2008).


    Google Scholar
     

  • Giles, S., Rogers, M. & Friedman, M. Bony labyrinth morphology in early neopterygian fishes (Actinopterygii: Neopterygii). J. Morphol. 279, 426–440 (2018).


    Google Scholar
     

  • Latimer, A. E. & Giles, S. A giant dapediid from the Late Triassic of Switzerland and insights into neopterygian phylogeny. R. Soc. Open Sci. 5, 180497 (2018).


    Google Scholar
     

  • Argyriou, T. et al. Internal cranial anatomy of Early Triassic species of †Saurichthys (Actinopterygii: †Saurichthyiformes): implications for the phylogenetic placement of †saurichthyiforms. BMC Evol. Biol. 18, 161 (2018).


    Google Scholar
     

  • Gignac, P. M. et al. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. J. Anat. 228, 889–909 (2016).

    CAS 

    Google Scholar
     

  • Pradel, A., Maisey, J. G., Mapes, R. H. & Kruta, I. First evidence of an intercalar bone in the braincase of “palaeonisciform” actinopterygians, with a virtual reconstruction of a new braincase of Lawrenciella Poplin, 1984 from the Carboniferous of Oklahoma. Geodiversitas 38, 489–504 (2016).


    Google Scholar
     

  • Coates, M. I. Actinopterygians from the Namurian of Bearsden, Scotland, with comments on early actinopterygian neurocrania. Zool. J. Linn. Soc. 122, 27–59 (1998).


    Google Scholar
     

  • Smeets, W. J. A. J. in The Central Nervous System of Vertebrates Vol. 1–3 (eds Nieuwenhuys, R. et al.) 551–654 (Springer, 1998).

  • Nieuwenhuys, R. in The Central Nervous System of Vertebrates Vol. 1–3 (eds Nieuwenhuys, R. et al.) 939–1006 (Springer, 1998).

  • Nieuwenhuys, R. in The Central Nervous System of Vertebrates Vol. 1–3 (eds Nieuwenhuys, R. et al.) 1007–1043 (Springer, 1998).

  • Northcutt, R. G. Forebrain evolution in bony fishes. Brain Res. Bull. 75, 191–205 (2008).


    Google Scholar
     

  • Morona, R., López, J. M., Northcutt, R. G. & González, A. Comparative analysis of the organization of the cholinergic system in the brains of two Holostean fishes, the Florida gar Lepisosteus platyrhincus and the bowfin Amia calva. Brain. Behav. Evol. 81, 109–142 (2013).


    Google Scholar
     

  • Bjerring, H. C. in Evolutionary Biology of Primitive Fishes (eds Foreman, R. E. et al.) 31–57 (Springer, 1985).

  • Chandler, A. C. On a lymphoid structure lying over the myelencephalon of Lepisosteus. Univ. Calif. Publ. Zool. 9, 85–104 (1911).


    Google Scholar
     

  • Fine, M. L., Horn, M. H. H. & Cox, B. Acanthonus armatus, a deep-sea teleost fish with a minute brain and large ears. Proc. R. Soc. Lond. B 230, 257–265 (1987).

    CAS 

    Google Scholar
     

  • Herzog, H., Klein, B. & Ziegler, A. Form and function of the teleost lateral line revealed using three-dimensional imaging and computational fluid dynamics. J. R. Soc. Interface 14, 20160898 (2017).


    Google Scholar
     

  • Watanabe, A. et al. Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny? J. Anat. 234, 291–305 (2019).


    Google Scholar
     

  • Rowe, T. B., Macrini, T. E. & Luo, Z.-X. Fossil evidence on origin of the mammalian brain. Science 332, 955–957 (2011).

    CAS 

    Google Scholar
     

  • Figueroa, R. T., Friedman, M. & Gallo, V. Cranial anatomy of the predatory actinopterygian Brazilichthys macrognathus from the Permian (Cisuralian) Pedra de Fogo Formation, Parnaíba Basin, Brazil. J. Vertebr. Paleontol. 39, e1639722 (2019).


    Google Scholar
     

  • Striedter, G. F. & Northcutt, R. G. Head size constrains forebrain development and evolution in ray-finned fishes. Evol. Dev. 8, 215–222 (2006).


    Google Scholar
     

  • Folgueira, M. et al. Morphogenesis underlying the development of the everted teleost telencephalon. Neural Develop. 7, 212 (2012).


    Google Scholar
     

  • Schmidt, M. Evolution of the hypothalamus and inferior lobe in ray-finned fishes. Brain Behav. Evol. 95, 302–316 (2020).


    Google Scholar
     

  • van der Horst, C. J. The myelencephalic gland of Polyodon, Acipenser and Amia. K. Akad. Wet. Amst. Proc. Sect. Sci. 28, 432–442 (1925).

  • Northcutt, R. G., Neary, T. J. & Senn, D. G. Observations on the brain of the coelacanth Latimeria chalumnae: External anatomy and quantitative analysis. J. Morphol. 155, 181–192 (1978).


    Google Scholar
     

  • White, E. G. A Classification and Phylogeny of the Elasmobranch Fishes American Museum Novitates 837 (American Museum of National History, 1936).

  • Lankester, E. R. & Ridewood, W. G. Guide to the Gallery of Fishes (British Museum, 1908).

  • Watson, D. M. S. The structure of certain palaeoniscids and the relationships of that group with other bony fish. Proc. Zool. Soc. Lond. 95, 815–870 (1925).


    Google Scholar
     

  • Poplin, C. M. & Véran, M. A revision of the actinopterygian fish Coccocephalus wildi from the Upper Carboniferous of Lancashire. Spec. Pap. Palaeontol. 52, 7–29 (1996).


    Google Scholar
     

  • Coates, M. I. & Tietjen, K. ‘This strange little palaeoniscid’: a new early actinopterygian genus, and commentary on pectoral fin conditions and function. Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 15–31 (2018).


    Google Scholar
     

  • Hough, E. Geology of the Burnley area (SD82NW and SD83SW) (British Geological Survey, 2004).

  • Waters, C. N. et al. A Revised Correlation of Carboniferous Rocks in the British Isles (Geological Society of London, 2011).

  • Vannier, J., Schoenemann, B., Gillot, T., Charbonnier, S. & Clarkson, E. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nat. Commun. 7, 10320 (2016).

    CAS 

    Google Scholar
     

  • Cherns, L. et al. Correlative tomography of an exceptionally preserved Jurassic ammonite implies hyponome-propelled swimming. Geology 50, 397–401 (2021).


    Google Scholar
     

  • Sansom, R. S., Gabbott, S. E. & Purnell, M. A. Atlas of vertebrate decay: a visual and taphonomic guide to fossil interpretation. Palaeontology 56, 457–474 (2013).


    Google Scholar
     

  • Sansom, R. S., Gabbott, S. E. & Purnell, M. A. Decay of vertebrate characters in hagfish and lamprey (Cyclostomata) and the implications for the vertebrate fossil record. Proc. R. Soc. B 278, 1150–1157 (2011).


    Google Scholar
     

  • Sansom, R. S. & Wills, M. A. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Sci. Rep. 3, 2545 (2013).


    Google Scholar